
May 2019

Nathan Greeneltch

Intel Processors

Deep Learning Software Stack for Intel® Processors

Intel® Math Kernel Library (Intel® MKL) is a proprietary performance library for wide

range of math and science applications

• Distribution: Intel Registration Center, package repositories (apt, yum, conda, pip)

Deep learning and AI ecosystem includes edge and datacenter applications.

• Open source frameworks (TensorFlow*, MXNet*, CNTK*, PaddlePaddle*)

• Intel deep learning products (Neon™ framework , BigDL, OpenVINO™ toolkit)

• In-house user applications

Intel MKL and Intel® MKL-DNN optimize deep learning applications for Intel processors

:

• Through collaboration with framework maintainers to upstream changes

(TensorFlow*, MXNet*, PaddlePaddle*, CNTK*)

• Through Intel optimized forks (Caffe*, Torch*, Theano*)

• By partnering to enable proprietary solutions

Intel® Math Kernel Library for Deep Neural Networks (Intel® MKL-DNN) is an open

source performance library for deep learning applications (available at

https://github.com/intel/mkl-dnn)

• Fast open source implementations for wide range of DNN functions

• Early access to new and experimental functionality

• Open for community contributions
Intel® MKL-DNNIntel MKL

2
*Other names and brands may be claimed as the property of others

https://github.com/intel/mkl-dnn

TensorFlow* with Intel MKL/Intel® MKL-DNN

Use Intel Distribution for Python*

§ Uses Intel MKL for many NumPy operations thus supports MKL_VERBOSE=1

§ Available via Conda, or YUM and APT package managers

Use pre-built TensorFlow* wheels or build TensorFlow* with `bazel build --config=mkl`

§ Building from source required for integration with Intel Vtune™ Amplifier

§ Follow the CPU optimization advices including setting affinity and # of intra- and inter- ops threads

§ More Intel® MKL-DNN-related optimizations are slated for the next version: Use the latest TensorFlow* master if
possible

*Other names and brands may be claimed as the property of others 3

https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/en-us/articles/using-intel-distribution-for-python-with-anaconda
https://software.intel.com/en-us/articles/installing-intel-free-libs-and-python-yum-repo
https://software.intel.com/en-us/articles/installing-intel-free-libs-and-python-apt-repo
https://github.com/tensorflow/tensorflow
https://www.tensorflow.org/performance/performance_guide

4

Intel® MKL-DNN scope

Primitives Class

• (De-)Convolution
• Inner Product
• Vanilla RNN, LSTM, GRU

Compute
intensive
operations

• Pooling AVG/MAX
• Batch Normalization
• Local Response Normalization
• Activations

(ReLU, Tanh, Softmax, ...)
• Sum

Memory
bandwidth
limited
operations

• Reorder
• Concatenation
• Shuffle

Data
movement

Intel® MKL-DNN overview

Features:

§ Training (float32) and inference (float32, int8)

§ CNNs (1D, 2D and 3D), RNNs (plain, LSTM, GRU)

§ Optimized for Intel processors

Portability:

§ Compilers: Intel C++ compiler/Clang/GCC/MSVC*

§ OSes: Linux*, Windows*, Mac*

§ Threading: OpenMP*, TBB

Frameworks that use Intel® MKL-DNN:

IntelCaffe, TensorFlow*, MxNet*, PaddlePaddle*

CNTK*, OpenVino, DeepBench*

Primitives Class

• (De-)Convolution

• Inner Product

• Vanilla RNN, LSTM, GRU

Compute

intensive

operations

• Pooling AVG/MAX

• Batch Normalization

• Local Response Normalization

• Activations

(ReLU, Tanh, Softmax, ...)

• Sum

Memory

bandwidth

limited

operations

• Reorder

• Concatenation

• Shuffle

Data

movement

5
*Other names and brands may be claimed as the property of others

7

Intel® MKL-DNN Overview
Descriptor: a structure describing memory and computation properties

Primitive: a handle to a particular compute operation

§ Examples: Convolution, ReLU, Batch Normalization, etc.

§ Three key operations on primitives: create, execute and destroy

§ Separate create and destroy steps help amortize setup costs (memory allocation, code generation, etc.) across multiple calls to execute

Memory: a handle to data

Stream: a handle to an execution context

Engine: a handle to an execution device

8

Intel® MKL-DNN Detailed Flow

9

Intel® MKL-DNN Object Snapshots

Memory layouts

Most popular memory layouts for image recognition are
nhwc and nchw
§ Challenging for Intel processors either for vectorization or for memory

accesses (cache thrashing)

Intel® MKL-DNN convolutions use blocked layouts

§ Example: nhwc with channels blocked by 16 – nChw16c

§ Convolutions define which layouts are to be used by other primitives

§ Optimized frameworks track memory layouts and perform reorders
only when necessary

nchw

nChw16c

Re
or

de
rs

11

1. Create memory descriptors

§ These describe the shapes and memory layouts of the tensors the primitive will compute on

§ Use the layout ‘any’ as much as possible for every input/output/weights if supported (e.g. convolution or
RNN). Otherwise, use the same layout as the previous layer output.

2. Create primitive descriptor and primitive

3. Create needed input reorders

§ Query the primitive for the input/output/weight layout it expects

§ Create the needed memory buffers and reorder primitives to accordingly reorder the data to the appropriate
layout

4. Enqueue primitives and reorders in the stream queue for execution

12

Layout propagation: the steps to create a primitive

On Intel processors a high % of time is
typically spent in BW-limited ops

§ ~40% of ResNet-50, even higher for inference

The solution is to fuse BW-limited ops with
convolutions or one with another to
reduce the # of memory accesses

§ Conv+ReLU+Sum, BatchNorm+ReLU, etc

§ Done for inference, WIP for training

The FWKs are expected to be able to
detect fusion opportunities

§ IntelCaffe already supports this

Major impact on implementation

§ All the impls. must be made aware of the
fusion to get max performance

§ Intel® MKL-DNN team is looking for scalable
solutions to this problem

Fusing computations
Conv

Conv

Sum ReLU

Conv

Conv+Sum+ReLU

13

Low-precision inference

Proven only for certain CNNs by
IntelCaffe at the moment

A trained float32 model quantized
to int8

Some operations still run in
float32 to preserve accuracy

PrimitiveFP32 FP32

FP32 model F32 model

Quantize model

INT8 model

Scale

Primitive FP32
INT8INT8

14

Fusing layers through post-ops

1. Create a post_ops structure

2. Append the layers to the post-ops structure (currently supports sum and elementwise operations)

3. Pass the post-op structure to the primitive descriptor creation through attributes

Quantized models support through attributes (more details)
1. Set the scaling factors and rounding mode in an attribute structure

2. Pass the attribute structure to the primitive descriptor creation

15

Primitive attributes

https://intel.github.io/mkl-dnn/ex_int8_simplenet.html

Intel® MKL-DNN integration levels

Convolution ReLU Batch Norm

Original code

Convolution ReLU Batch NormReorderReorder

Naïve integration

Layout propagation

Convolution ReLU Batch Norm ReorderReorder

Layer fusion

Conv+ReLU ReorderReorder

Transform weights to integrate
BN (offline)

Intel® MKL-DNN is designed for best
performance.

However, topology level performance will
depend on Intel® MKL-DNN integration.

• Naïve integration will have reorder
overheads.

• Better integration will propagate
layouts to reduce reorders.

• Best integration will fuse memory
bound layers with compute intensive
ones or with each other.

Example: inference flow

Low
er perform

ance Better perform
ance

16

17

Intel® MKL-DNN: How To Get?
Build from source using walkthrough à https://software.intel.com/en-us/articles/intel-mkl-dnn-part-1-library-overview-and-installation

https://software.intel.com/en-us/articles/intel-mkl-dnn-part-1-library-overview-and-installation

Intel® MKL-DNN: How to know if you have it in
framework? à MKLDNN_VERBOSE

18

mkldnn_verbose,info,Intel(R) MKL-DNN v0.18.0 (Git Hash 4cfed5bf82f1339d7c8c7f622fda02dc00ec8ad8),
Intel(R) Advanced Vector Extensions 2 (Intel(R) AVX2)
mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_nchw out:f32_nChw8c,num:1,2x16x7x7,0.529053
mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_oihw out:f32_OIhw8i8o,num:1,16x16x5x5,0.98999
mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_nchw out:f32_nChw8c,num:1,2x16x7x7,0.453125
mkldnn_verbose,exec,reorder,simple:any,undef,in:f32_x out:f32_x,num:1,16,0.388916
mkldnn_verbose,exec,convolution,jit:avx2,forward_training,fsrc:nChw8c fwei:OIhw8i8o fbia:x
fdst:nChw8c,alg:convolution_direct,mb2_ic16oc16_ih7oh7kh5sh1dh0ph2_iw7ow7kw5sw1dw0pw2,0.0241699
mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_nChw8c out:f32_nchw,num:1,2x16x7x7,0.469971

export MKLDNN_VERBOSE=1

./program.exe

Intel® MKL-DNN verbose mode overview

Simple yet powerful analysis tool:

§ Similar to Intel MKL verbose

§ Enabled via environment variable or

function call

§ Output is in CSV format

Output includes:

§ The marker, state and primitive kind

§ Implementation details (e.g. jit:avx2)

§ Primitive parameters

§ Creation or execution time (in ms)

Example below (details here)

$ # MKLDNN_VERBOSE is unset
$./examples/simple-net-c
passed

$ export MKLDNN_VERBOSE=1 # report only execution parameters and runtime
$./examples/simple-net-c # | grep "mkldnn_verbose"
mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_oihw out:f32_Ohwi8o,num:1,96x3x11x11,12.2249
mkldnn_verbose,exec,eltwise,jit:avx2,forward_training,fdata:nChw8c,alg:eltwise_relu,mb8ic96ih55iw55,0.437988
mkldnn_verbose,exec,lrn,jit:avx2,forward_training,fdata:nChw8c,alg:lrn_across_channels,mb8ic96ih55iw55,1.70093
mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_nChw8c out:f32_nchw,num:1,8x96x27x27,0.924805
passed

19

https://software.intel.com/en-us/articles/verbose-mode-supported-in-intel-mkl-112
https://intel.github.io/mkl-dnn/perf_profile.html

20

Performance gaps causes

Functional gaps: your hotspot is a commonly/widely used primitive and is not enabled
in Intel® MKL-DNN

Integration gaps: your hotspot uses Intel® MKL-DNN but runs much faster in a
standalone benchmark (more details in the hands-on session)

Intel® MKL-DNN performance issue: your hotspot uses Intel® MKL-DNN but is very slow
given its parameters

In any of these cases, feel free to contact the Intel® MKL-DNN team through the Github*
page issues section.

*Other names and brands may be claimed as the property of others

https://github.com/intel/mkl-dnn/issues

© 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be
claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Prototyping a TensorFlow* model

TensorFlow* Core
1. Build a computational graph (a tf.Graph).

o Google’s definition: “A computational graph is a series of TensorFlow*
operations arranged into a graph. “

o Nodes(compute operations) & Edges (Tensors: ndarray)

2. Run the computational graph (using a tf.Session).

Data Flow graph Advantages

1. Parallelism
2. Distributed execution

Nodes

Edges

22

https://software.intel.com/en-us/articles/optimization-notice

© 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be
claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Intel-optimized TensorFlow*

23

Intel® MKL-DNN

Primitives for DNN domain

Library is open-source (https://github.com/intel/mkl-dnn) and downloaded automatically when building TensorFlow*.

MKL-DNN accelerates AlexNet, VGG, GoogleNet, MXNet and ResNet neural networks

Optimizations introduced in TF:

Operator optimizations

Graph optimizations

System optimizations

Coming straight from MKL-DNN, out-of-the-box, no code changes required!!

https://software.intel.com/en-us/articles/optimization-notice

© 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be
claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Replace default (Eigen) kernels
by highly-optimized kernels
(using Intel® MKL-DNN)

Key optimizations:
• Direct batched convolution
• Inner product
• Pooling: maximum, minimum, average
• Normalization: local response normalization across

channels (LRN), batch normalization
• Activation: rectified linear unit (ReLU)
• Data manipulation: multi-dimensional transposition

(conversion), split, concat, sum and scale.

Forward Backward
Conv2D Conv2DGrad
Relu, TanH, ELU ReLUGrad, TanHGrad,

ELUGrad
MaxPooling MaxPoolingGrad

AvgPooling AvgPoolingGrad

BatchNorm BatchNormGrad

LRN LRNGrad

MatMul, Concat

Operator optimizations

24

https://software.intel.com/en-us/articles/optimization-notice

© 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be
claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Graph optimizations: fusion

25

Conv2D

BiasAdd

Input Filter

Bias
Conv2DWithBias

Input Filter Bias

Before Merge After Merge

https://software.intel.com/en-us/articles/optimization-notice

© 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be
claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Graph optimizations: fusion

26

Conv2D

ReLU

Input Filter

Conv2DWithRelu

Input Filter

Before Merge After Merge

https://software.intel.com/en-us/articles/optimization-notice

© 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be

claimed as the property of others.

For more complete information about compiler optimizations, see our Optimization Notice.

Graph optimizations: layout propogation

27

• What is layout?

• How do we represent N-D tensor as a 1-D array.

21 18 32 6 3

1 8 0 3 26

40 9 22 76 81

23 44 81 32 11

5 38 10 11 1

8 92 37 29 44

11 9 22 3 26

3 47 29 88 1

15 16 22 46 12

29 9 13 11 1 21 8 18 92 32 37 6 ..

21 18 … 1 … 8 92 ..

Better optimized for

some operations

vs.

{N:2, R:5, C:5} Impacts performance during

weight updates

https://software.intel.com/en-us/articles/optimization-notice

© 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be
claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Graph optimizations: layout COnversion

28

• Converting to/from optimized layout
can be less expensive than operating
on un-optimized layout.

• All MKL-DNN operators use highly-
optimized layouts for TensorFlow*
tensors.

Conv2D

ReLU

Input Filter

Shape

MklConv2D

Input Filter

Convert

Convert Convert

MklReLU

Convert

Shape

Convert

Initial Graph After Layout Conversions

https://software.intel.com/en-us/articles/optimization-notice

© 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be
claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Graph optimizations: layout propagation

Did you notice anything
wrong with previous graph?

Problem: redundant
conversions

MklConv2D

Input Filter

Convert

Convert Convert

MklReLU

Convert

Shape

Convert

MklConv2D

Input Filter

Convert Convert

MklReLU

Convert

Shape

After Layout Conversion After Layout Propagation

29

https://software.intel.com/en-us/articles/optimization-notice

© 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be
claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

System optimizations: load balancing

TensorFlow* graphs offer opportunities for parallel
execution.

Threading model, Tune you MKL w/

1. inter_op_parallelism_threads = max
number of operators that can be executed
in parallel

2. intra_op_parallelism_threads = max
number of threads to use for executing an
operator

3. OMP_NUM_THREADS = MKL-DNN equivalent of
intra_op_parallelism_threads

More details:
https://www.TensorFlow*.org/performance/perfor
mance_guide

MklConv2D

Input Filter

Convert Convert

MklReLU

Convert

Shape

30

>>> config = tf.ConfigProto()
>>> config.intra_op_parallelism_threads = 56
>>> config.inter_op_parallelism_threads = 2
>>> tf.Session(config=config)

https://software.intel.com/en-us/articles/optimization-notice
https://www.tensorflow.org/performance/performance_guide

© 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be
claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

System optimizations: load balancing

Incorrect setting of threading model
parameters can lead to over- or
under-subscription, leading to poor
performance.

Solution:

§ Set these parameters for your model
manually.

§ Guidelines on TensorFlow* webpage

OMP: Error #34: System unable to

allocate necessary resources for

OMP thread:

OMP: System error #11: Resource

temporarily unavailable

OMP: Hint: Try decreasing the

value of OMP_NUM_THREADS.

31

https://software.intel.com/en-us/articles/optimization-notice

1. Application developers already benefit of Intel® MKL-DNN through integration in
popular frameworks

2. Framework developers can get better performance on Intel processors by integrating
Intel® MKL-DNN

3. There are different levels of integration, and depending on the level you will get
different performance

4. Profiling can help you identify performance gaps due to

§ Integration not fully enabling Intel® MKL-DNN potential (more on that in the hands-on session).

§ Performance sensitive function not enabled with Intel® MKL-DNN (make requests on Github*)

§ Performance issue in Intel® MKL-DNN (raise the issue on Github*)

33

Key Takeaways

https://github.com/intel/mkl-dnn/issues
https://github.com/intel/mkl-dnn/issues)

Legal Disclaimer & Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more complete information visit
www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, Atom, OpenVINO, neon, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

35

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

© 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be
claimed as the property of others.

For more complete information about compiler optimizations, see our Optimization Notice.

Profiling ResNet50 Training

37

Intel-optimized: 5,798ms
64 images/sec

Stock: 108,922ms
3 images/ sec

• Nearly 19X faster & 20X images processed/sec
$ python tf_cnn_benchmarks.py --device=cpu --mkl=True --data_format=NHWC \

--kmp_affinity=‘granularity=fine,noverbose,compact,1,0’ --kmp_blocktime=1 \
--kmp_settings=1 --num_warmup_batches=20 --batch_size=256 --num_batches=50 \
--model=resnet50 --num_intra_threads=56 --num_inter_threads=2 --forward_only=false \
--trace_file='tf_timeline_training_benchmark_latest.json'

Benchmarking script:
https://github.com/TensorFlow*/benchmarks/tre
e/master/scripts
Open the json result with
chrome://tracing/ à load

https://software.intel.com/en-us/articles/optimization-notice

Integration with Intel VTune Amplifier

Full application analysis

Report types:
§ CPU utilization

§ Parallelization efficiency

§ Memory traffic

Profiling of run-time generated code must
be enabled at compile time

$ # building Intel® MKL-DNN using cmake
$ cmake –DVTUNEROOT=/opt/intel/vtune_amplifier_2018 .. && make install

$ # an alternative: building Intel® MKL-DNN using sources directly, e.g. in TensorFlow*
$ CFLAGS="-I$VTUNEROOT/include -DJIT_PROFILING_VTUNE" LDFLAGS="-L$VTUNEROOT/lib64 -ljitprofiling" bazel build

39

Intel® MKL-DNN verbose mode overview

Simple yet powerful analysis tool:

§ Similar to Intel MKL verbose

§ Enabled via environment variable or

function call

§ Output is in CSV format

Output includes:

§ The marker, state and primitive kind

§ Implementation details (e.g. jit:avx2)

§ Primitive parameters

§ Creation or execution time (in ms)

Example below (details here)

$ # MKLDNN_VERBOSE is unset
$./examples/simple-net-c
passed

$ export MKLDNN_VERBOSE=1 # report only execution parameters and runtime
$./examples/simple-net-c # | grep "mkldnn_verbose"
mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_oihw out:f32_Ohwi8o,num:1,96x3x11x11,12.2249
mkldnn_verbose,exec,eltwise,jit:avx2,forward_training,fdata:nChw8c,alg:eltwise_relu,mb8ic96ih55iw55,0.437988
mkldnn_verbose,exec,lrn,jit:avx2,forward_training,fdata:nChw8c,alg:lrn_across_channels,mb8ic96ih55iw55,1.70093
mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_nChw8c out:f32_nchw,num:1,8x96x27x27,0.924805
passed

40

https://software.intel.com/en-us/articles/verbose-mode-supported-in-intel-mkl-112
https://intel.github.io/mkl-dnn/perf_profile.html

41

Performance gaps causes

Functional gaps: your hotspot is a commonly/widely used primitive and is not enabled
in Intel® MKL-DNN

Integration gaps: your hotspot uses Intel® MKL-DNN but runs much faster in a
standalone benchmark (more details in the hands-on session)

Intel® MKL-DNN performance issue: your hotspot uses Intel® MKL-DNN but is very slow
given its parameters

In any of these cases, feel free to contact the Intel® MKL-DNN team through the Github*
page issues section.

*Other names and brands may be claimed as the property of others

https://github.com/intel/mkl-dnn/issues

